English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Analytical and Bioanalytical Chemistry 2010-Aug

Direct detection and discrimination of double-stranded oligonucleotide corresponding to hepatitis C virus genotype 3a using an electrochemical DNA biosensor based on peptide nucleic acid and double-stranded DNA hybridization.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
M H Pournaghi-Azar
F Ahour
M S Hejazi

Keywords

Abstract

Development of an electrochemical DNA biosensor for the direct detection and discrimination of double-stranded oligonucleotide (dsDNA) corresponding to hepatitis C virus genotype 3a, without its denaturation, using a gold electrode is described. The electrochemical DNA sensor relies on the modification of the gold electrode with 6-mercapto-1-hexanol and a self-assembled monolayer of 14-mer peptide nucleic acid probe, related to the hepatitis C virus genotype 3a core/E1 region. The increase of differential pulse voltammetric responses of methylene blue, upon hybridization of the self-assembled probe with the target ds-DNA to form a triplex is the principle behind the detection and discrimination. Some hybridization experiments with non-complementary oligonucleotides were carried out to assess whether the developed DNA sensor responds selectively to the ds-DNA target. Diagnostic performance of the biosensor is described and the detection limit was found to be 1.8 x 10(-12) M in phosphate buffer solution, pH 7.0. The relative standard deviation of measurements of 100 pM of target ds-DNA performed with three independent probe-modified electrodes was 3.1%, indicating a remarkable reproducibility of the detection method.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge