English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Protoplasma 2001

Direct interaction between glyoxysomes and lipid bodies in cotyledons of the Arabidopsis thaliana ped1 mutant.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Y Hayashi
M Hayashi
H Hayashi
I Hara-Nishimura
M Nishimura

Keywords

Abstract

During germination and subsequent growth of fatty seeds, higher plants obtain energy from the glyconeogenic pathway in which fatty acids are converted to succinate in glyoxysomes, which contain enzymes for fatty acid beta-oxidation and the glyoxylate cycle. The Arabidopsis thaliana ped1 gene encodes a 3-ketoacyl-CoA thiolase (EC 2.3.1.16) involved in fatty acid beta-oxidation. The ped1 mutant shows normal germination and seedling growth under white light. However, etiolated cotyledons of the ped1 mutant grow poorly in the dark and have small cotyledons. To elucidate the mechanisms of lipid degradation during germination in the ped1 mutant, we examined the morphology of the ped1 mutant. The glyoxysomes in etiolated cotyledons of the ped1 mutant appeared abnormal, having tubular structures that contained many vesicles. Electron microscopic analysis revealed that the tubular structures in glyoxysomes are derived from invagination of the glyoxysomal membrane. By immunoelectron microscopic analysis, acyl-CoA synthetase (EC 6.2.1.3), which was located on the membrane of glyoxysomes in wild-type plants, was located on the membranes of the tubular structures in the glyoxysomes in the ped1 mutant. These invagination sites were always in contact with lipid bodies. The tubular structure had many vesicles containing substances with the same electron density as those in the lipid bodies. From these results, we propose a model in which there is a direct mechanism of transporting lipids from the lipid bodies to glyoxysomes during fatty acid beta-oxidation.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge