English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Planta Medica 2014-Oct

Discrimination of Solanaceae taxa and quantification of scopolamine and hyoscyamine by ATR-FTIR spectroscopy.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Annette Naumann
Lukas Kurtze
Andrea Krähmer
Hansjoerg Hagels
Hartwig Schulz

Keywords

Abstract

Plant species of the Solanaceae family (nightshades) contain pharmacologically active anticholinergic tropane alkaloids, e.g., scopolamine and hyoscyamine. Tropane alkaloids are of special interest, either as active principles or as starting materials for semisynthetic production of other substances. For genetic evaluation, domestication, cultivation, harvest and post-harvest treatments, quantification of the individual active principles is necessary to monitor industrial processes and the resulting finished products. Up to now, frequently applied methods for quantification are based on high performance liquid chromatography and gas chromatography optionally combined with mass spectrometry. However, alternative analytical methods have the potential to replace the established standard methods partly. In this context, attenuated total reflection-Fourier transform infrared spectroscopy enabled chemotaxonomical classification of the Solanaceae Atropa belladonna, Datura stramonium, Hyoscyamus niger, Solanum dulcamara, and Duboisia in combination with cluster analysis. Also discrimination of genotypes within species was achieved to some extent. The most characteristic scopolamine bands could be identified in attenuated total reflection-Fourier transform infrared spectra of Solanaceae leaves, which allow a fast characterisation of plants with high scopolamine content. Applying a partial least square algorithm, very good calibration statistics were obtained for the prediction of the scopolamine content (residual prediction deviation = 7.67), and moderate prediction quality could be achieved for the hyoscyamine content (residual prediction deviation = 2.48).

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge