English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Developmental Neurobiology 2018-Oct

Disruption of MET Receptor Tyrosine Kinase, an Autism Risk Factor, Impairs Developmental Synaptic Plasticity in the Hippocampus.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Xiaokuang Ma
Ke Chen
Zhongming Lu
Mariel Piechowicz
Qiang Liu
Jie Wu
Shenfeng Qiu

Keywords

Abstract

As more genes conferring risks to neurodevelopmental disorders are identified, translating these genetic risk factors into biological mechanisms that impact the trajectory of the developing brain is a critical next step. Here, we report that disrupted signaling mediated MET receptor tyrosine kinase (RTK), an established risk factor for autism spectrum disorders, in the developing hippocampus glutamatergic circuit leads to profound deficits in neural development, synaptic transmission, and plasticity. In cultured hippocampus slices prepared from neonatal mice, pharmacological inhibition of MET kinase activity suppresses dendritic arborization and disrupts normal dendritic spine development. In addition, single-neuron knockdown (RNAi) or overexpression of Met in the developing hippocampal CA1 neurons leads to alterations, opposite in nature, in basal synaptic transmission and long-term plasticity. In forebrain-specific Met conditional knockout mice (Metfx/fx ;emx1cre ), an enhanced long-term potentiation (LTP) and long-term depression (LTD) were observed at early developmental stages (P12-14) at the Schaffer collateral to CA1 synapses compared with wild-type littermates. In contrast, LTP and LTD were markedly reduced at young adult stage (P56-70) during which wild-type mice show robust LTP and LTD. The altered trajectory of synaptic plasticity revealed by this study indicate that temporally regulated MET signaling as an intrinsic, cell autonomous, and pleiotropic mechanism not only critical for neuronal growth and functional maturation, but also for the timing of synaptic plasticity during forebrain glutamatergic circuits development.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge