English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Neuropathology and Experimental Neurology 2001-Jan

Distinct differences in binding capacity to saccharide epitopes in supratentorial pilocytic astrocytomas, astrocytomas, anaplastic astrocytomas, and glioblastomas.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
I Camby
C Decaestecker
L Gordower
R DeDecker
Y Kacem
A Lemmers
H C Siebert
N V Bovin
P Wesseling
A Danguy

Keywords

Abstract

We monitored the expression of glycan-binding sites on a panel of 10 biotinylated neoglycoconjugates by means of quantitative computer-assisted microscopy to further study the molecular mechanisms in the extensive infiltration of the surrounding brain parenchyma by most astrocytic tumors. Three distinct histological compartments were analyzed for each of the 108 astrocytic tumors (15 pilocytic astrocytomas (WHO grade I), 25 astrocytomas (WHO grade II), 30 anaplastic astrocytomas (WHO grade III), and 38 glioblastomas (WHO grade IV) included in our series. These compartments were tumors (nonperivascular tumor astrocytes), perivascular tumor astrocytes, and blood vessel walls. Clear differences were observed between the pilocytic and the diffuse astrocytic tumors. Furthermore, malignant progression in the latter category was paralleled by a decrease in cells' ability to bind distinct sugar epitopes, especially the D-GalNAc(alpha1-3)-D-GalNAc-beta1-R determinant of the Forssman pentasaccharide in tumors, the alpha-L-fucose in perivascular tumor areas, and the beta-D-glucose in tumor vessel walls. Markedly, the level of binding site expression for alpha-D-mannose decreased in the tumors, the perivascular tumor areas, and the vessel walls. These glycohistochemical results imply the functional relevance of protein-carbohydrate interactions in this tumor system.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge