English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Scientific Reports 2017-Feb

Distinct signatures of dental plaque metabolic byproducts dictated by periodontal inflammatory status.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Akito Sakanaka
Masae Kuboniwa
Ei Hashino
Takeshi Bamba
Eiichiro Fukusaki
Atsuo Amano

Keywords

Abstract

Onset of chronic periodontitis is associated with an aberrant polymicrobial community, termed dysbiosis. Findings regarding its etiology obtained using high-throughput sequencing technique suggested that dysbiosis holds a conserved metabolic signature as an emergent property. The purpose of this study was to identify robust biomarkers for periodontal inflammation severity. Furthermore, we investigated disease-associated metabolic signatures of periodontal microbiota using a salivary metabolomics approach. Whole saliva samples were obtained from adult subjects before and after removal of supragingival plaque (debridement). Periodontal inflamed surface area (PISA) was employed as an indicator of periodontal inflammatory status. Based on multivariate analyses using pre-debridement salivary metabolomics data, we found that metabolites associated with higher PISA included cadaverine and hydrocinnamate, while uric acid and ethanolamine were associated with lower PISA. Next, we focused on dental plaque metabolic byproducts by selecting salivary metabolites significantly decreased following debridement. Metabolite set enrichment analysis revealed that polyamine metabolism, arginine and proline metabolism, butyric acid metabolism, and lysine degradation were distinctive metabolic signatures of dental plaque in the high PISA group, which may be related to the metabolic signatures of disease-associated communities. Collectively, our findings identified potential biomarkers of periodontal inflammatory status and also provide insight into metabolic signatures of dysbiotic communities.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge