English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Protein Engineering, Design and Selection 2004-Feb

Distribution of proline-rich (PxxP) motifs in distinct proteomes: functional and therapeutic implications for malaria and tuberculosis.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Beeram Ravi Chandra
Ramasamy Gowthaman
Reetesh Raj Akhouri
Dinesh Gupta
Amit Sharma

Keywords

Abstract

We have conducted a survey of proline-rich (PxxP) motifs in the proteomes of human, mouse, yeast, Mycobacterium tuberculosis and Plasmodium falciparum. Our analyses reveal a strikingly high occurrence of these motifs in each organism, suggesting a wide dependence on protein-protein interaction networks in cellular systems. All proteomes considered have an abundance of PxxP motifs which can potentially participate in binding to SH3 domain-containing proteins. A large fraction of these motifs can be assigned to structurally conserved types of class I and class II sequences. We propose that while maintaining the primary biochemical function, many proteins are likely to participate in additional interactions involving molecular cross-talk with other proteins using proline-rich and other motifs. We have also identified PxxP-containing motifs that are unique to P.falciparum and M.tuberculosis. These sequences may serve as leads for the development of peptidomimics that specifically target these organisms. We propose a novel drug target selection strategy where shared PxxP-containing motifs can be used to direct the development of inhibitors that focus on multiple targets in the cell. Screening for such unique PxxP-containing motifs in the P.falciparum proteome yielded highly conserved sequences in the variant surface antigen family that can be used to initiate design of peptidomimics that may potentially abrogate parasite cytoadherence during malaria infections.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge