English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochemical Pharmacology 1997-Feb

Dopamine- and L-beta-3,4-dihydroxyphenylalanine hydrochloride (L-Dopa)-induced cytotoxicity towards catecholaminergic neuroblastoma SH-SY5Y cells. Effects of oxidative stress and antioxidative factors.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
C T Lai
P H Yu

Keywords

Abstract

Enhanced oxidative stress has been suggested to be involved in the degeneration of nigrostriatal dopaminergic neurons in Parkinson's disease. The high turnover rate of dopamine and/or unsequestered dopamine may cause an increase of formation of hydrogen peroxide via either oxidative deamination of dopamine by monoamine oxidase or autoxidation. Hydrogen peroxide would be converted to more toxic hydroxyl free radicals. L-beta-3,4-Dihydroxyphenylalanine hydrochloride (L-DOPA), the most useful drug in the symptomatic treatment of Parkinson's disease, has been considered to possess deteriorating degenerative side-effects. The catecholaminergic neuroblastoma SH-SY5Y cells were chosen to investigate the cytotoxic effect of dopamine and L-DOPA. Both dopamine and L-DOPA were found to be cytotoxic towards SH-SY5Y cells. Such toxic effects were accompanied by an increase of oxidative stress in the cell cultures and could be reversed effectively by catalase and to a lesser extent by superoxide dismutase. The non-enzymatic antioxidants L-ascorbic acid, glutathione, N-acetyl-L-cysteine, but not (+)-alpha-tocopherol, also completely protected SH-SY5Y cells against the cytotoxic effects induced by dopamine and L-DOPA. Antioxidative factors, namely free radical scavengers (including N-tert-butyl-alpha-phenylnitrone, salicylic acid, and D-mannitol) and a strong iron chelator, deferoxamine, however, did not protect the SH-SY5Y cells against dopamine and L-DOPA. The generation of reactive oxygen species and the resulting enhanced oxidative stress was clearly involved in the dopamine- and L-DOPA-induced cytotoxic effects. Hydrogen peroxide played the most important role related to cytotoxicity of dopamine and L-DOPA.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge