English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
American Journal of Respiratory and Critical Care Medicine 1999-Feb

Dopamine restores lung ability to clear edema in rats exposed to hyperoxia.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
F J Saldías
E Lecuona
A P Comellas
K M Ridge
J I Sznajder

Keywords

Abstract

Exposure to hyperoxia causes lung injury, decreases active sodium transport and lung edema clearance in rats. Dopamine (DA) increases lung edema clearance by stimulating vectorial Na+ flux and Na, K-ATPase function in rat alveolar epithelium. This study was designed to test whether DA (10(-)5 M) would increase lung edema clearance in rats exposed to 100% O2 for 64 h. Active Na+ transport and lung edema clearance decreased by approximately 44% in rats exposed to acute hyperoxia (p < 0.001). DA increased lung edema clearance in room air breathing rats (from 0.50 +/- 0.02 to 0.75 +/- 0.06 ml/h) and in rats exposed to 100% O2 (from 0.28 +/- 0.03 to 0. 67 +/- 0.03 ml/h). Disruption of cell microtubular transport system by colchicine blocked the stimulatory effect of DA on active Na+ transport in control and hyperoxic rats, whereas the isomer beta-lumicolchicine, which does not affect cell microtubular transport, did not inhibit the stimulatory effects of dopamine. The Na,K-ATPase alpha1-subunit protein abundance increased in the basolateral membranes of alveolar type II (ATII) cells incubated with 10(-)5 M DA for 15 min, probably by recruiting Na+ pumps from intracellular pools. Colchicine, but not beta-lumicolchicine, prevented the recruitment of alpha1 subunits to the plasma membrane by DA. Accordingly, DA restored lung ability to clear edema in hyperoxic-injured rat lungs. Conceivably, dopamine induces recruitment of Na+ pumps from intracellular pools to the plasma membrane of alveolar epithelial cells and thus increases lung edema clearance.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge