English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Nutritional Biochemistry 2009-Sep

Down-regulation in muscle and liver lipogenic genes: EPA ethyl ester treatment in lean and overweight (high-fat-fed) rats.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Nerea Pérez-Echarri
Patricia Pérez-Matute
Beatriz Marcos-Gómez
Amelia Marti
J Alfredo Martínez
María J Moreno-Aliaga

Keywords

Abstract

The precise mechanisms by which omega-3 fatty acids improve fat metabolism are not completely understood. This study was designed to determine the effects of eicosapentaenoic acid (EPA) ethyl ester administration on the expression levels of several muscle, liver and adipose tissue genes involved in lipogenesis and fatty acid oxidation pathways. Male Wistar rats fed a standard diet (control animals) or a high-fat diet were treated daily by oral gavage with EPA ethyl ester (1g/kg) for 5 weeks. The high-fat diet caused a very significant increase in plasma cholesterol (P<.01) levels, which was reverted by EPA (P<.001). A significant decrease in circulating triglyceride levels (P<.05) was also observed in EPA-treated groups. EPA administration induced a significant down-regulation in some lipogenic genes such as muscle acetyl CoA carboxylase beta (ACC beta) (P<.05) and liver fatty acid synthase (FAS) (P<.05). Furthermore, a decrease in glucokinase (GK) gene expression was observed in EPA-treated animals fed a control diet (P<.01), whereas a significant increase in GK mRNA levels was found in groups fed a high-fat diet. On the other hand, no alterations in genes involved in beta-oxidation, such acetyl CoA synthase 4 (ACS4), acetyl CoA synthase 5 (ACS5) or acetyl CoA oxidase (ACO), were found in EPA-treated groups. Surprisingly and opposite to the expectations, a very significant decrease in the expression levels of liver PPARalpha (P<.01) was observed after EPA treatment. These findings show the ability of EPA ethyl ester treatment to down-regulate some genes involved in fatty acid synthesis without affecting the transcriptional activation of beta-oxidation-related genes.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge