English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Acta crystallographica. Section D, Biological crystallography 1996-May

E144S active-site mutant of the Bacillus cereus thermolysin-like neutral protease at 2.8 A resolution.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
S A Lister
D R Wetmore
R S Roche
P W Codding

Keywords

Abstract

The X-ray crystal structure of the Bacillus cereus neutral protease (CNP) active-site mutant E144S, in which the putative general base proposed for the thermolysin-like zinc neutral proteases, Glu144, has been replaced by serine, has been determined to a resolution of 2.8 A. This represents the first crystal structure of an active-site mutant of a zinc neutral protease. The E 144S mutant was crystallized in the hexagonal space group, P6(5)22, with unit-cell dimensions a = b = 76.57, c = 201.91 A. Although the ligands involved in zinc coordination in the active site are identical to those found in the wild-type protein, the mutation results in a modified environment around the zinc ion; particularly with respect to the water molecules. While the structure of the mutant is similar to that of wild type, its protease activity is reduced to 0.16% that of the wild-type CNP and the protein is virtually resistant to autolysis in the presence of calcium. The lowered protease activity of the mutant is consistent with the role proposed for Glu144 as the general base in the catalysis of thermolysin-like neutral proteases [Matthews (1988). Acc. Chem. Res. 21, 333-340]. We suggest that the residual activity of the E144S mutant arises from a water molecule, which is found within hydrogen-bonding distance of Ser144, acting as a general base in the catalytic function of the mutant.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge