English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology and Biochemistry 2015-Dec

Ecophysiological constraints of Aster tripolium under extreme thermal events impacts: Merging biophysical, biochemical and genetic insights.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
B Duarte
J W Goessling
J C Marques
I Caçador

Keywords

Abstract

Cold and heat waves are phenomenon that occurs in higher frequency and intensity due to global climate changes. Commonly cultivated crop species are crucially affected by extreme weather events, and therefore alternative crops - such as halophytes - gain in agricultural interest. While halophytes are potentially able to cope with temperature extremes on the long term exposure, effects of temporary events such as cold and heat waves are not yet described. In order to unveil the effects of these altered thermal environments, Aster tripolium plants were subjected to cold (9/5 °C) and heat (42/38 °C) waves regimes during 3 days and its photochemical and biochemical traits evaluated. In the potential cash crop A. tripolium cold waves induced the gene expression of dehydrins in order to counteract desiccation and thus to prevent oxidative stress. Regulatory proteins on the RNA maturation level (Maturase K) were highly expressed. Heat stress induced the gene expression of the cystein protease gene; most likely to degrade misfolded proteins temporary. Both thermal treatments decreased the photosynthetic efficiency and capacity, driven by a loss in the connectivity between PSII antennae. Nevertheless the light absorption capacity was unaffected due to an increased RC closure net rate. Cold wave-treated individuals showed a decrease in the carotenoid pigmentation, except auroxanthin. In cold wave treated individuals the overall peroxidase activity was significantly increased. Data suggest that exposure to both, cold and heat wave treatment decreased the ecophysiological capacity of A. tripolium.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge