English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Ecotoxicology 2015-Oct

Ecophysiological differences between three mangrove seedlings (Kandelia obovata, Aegiceras corniculatum, and Avicennia marina) exposed to chilling stress.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Ya-Lan Peng
You-Shao Wang
Jiao Fei
Cui-Ci Sun
Hao Cheng

Keywords

Abstract

Although the cold-resistant ability of mangroves varies greatly with species, the physiological mechanism remains unclear. The chilling stress effects on morphological changes, photosynthetic pigments, reactive oxygen species (ROS), malondialdehyde (MDA) and several antioxidants, were studied in leaves of three mangrove seedlings (Kandelia obovata, Aegiceras corniculatum and Avicennia marina). Results showed that both K. obovata and A. corniculatum exhibited lighter chilling damage, lower chilling injury rates and higher survival rates compared to A. marina. Reductions of chlorophylls (Chls) were observed in all the three mangroves, and the highest was detected in A. marina. Significant increases in content of ROS (hydrogen peroxide, H2O2; hydroxyl radicals, OH⋅) and MDA were observed in both A. marina and A. corniculatum, whereas chilling stressed K. obovata showed a decrease in H2O2 content, constant OH⋅ level and instantaneous increase of MDA. The contents of proline and water-soluble protein exhibited similar stress-time dependent increases in all mangroves, while A. corniculatum showed the highest increase of proline and relatively higher increase of water-soluble protein. The catalase activities significantly decreased with stress time in all mangroves, while K. obovata showed the least reduction. An increase in ascorbic acid (AsA) content and activities of superoxide dismutase, peroxidase (POD), and ascorbate peroxidase (APX) were also detected in all the three mangroves, while K. obovata showed the highest increases. These results indicate that chilling-tolerance of mangroves is associated with the efficiency of antioxidants, as confirmed by principal component analysis. The AsA, APX and POD in K. obovata may play more important role in control of oxidative stresses than those in the other two species. Furthermore, the higher cold-resistance of A. corniculatum compared to A. marina may be partly associated with its higher proline accumulation. The results indicate that enzymatic and non-enzymatic antioxidants (POD, APX, AsA, proline and Car) play key roles in scavenging of excess ROS in mangroves. Further studies focusing on these stress-responsive genes will enable better understanding of the cold-resistance mechanism from molecular level.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge