English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Immunopharmacology 2005-Feb

Effect of Linomide on adhesion molecules, TNF-alpha, nitrogen oxide, and cell adhesion.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
A Abdul-Hai
R Hershkoviz
L Weiss
O Lider
S Slavin

Keywords

Abstract

Linomide (quinoline-3-carboxamide) is an immunomodulator with anti-inflammatory effects in rodents with autoimmune diseases. Its mode of action still remains to be elucidated. We hypothesized that an investigation of T cell interactions with the extracellular matrix (ECM), composed of glycoproteins such as fibronectin (FN) and laminin (LN), might provide better understanding of their in vivo mode of action in extravascular inflammatory sites. We examined the effect of Linomide on T cell adhesion to intact ECM, and separately to LN, and FN, and on the release and production of tumor necrosis factor (TNFalpha) and nitrogen oxide (NO) in relation to adhesive molecules in non-obese diabetic (NOD) female spleen cells, focusing on intracellular adhesion molecule-1 (ICAM-1) and CD44. NOD female mice that developed spontaneous autoimmune insulitis, which destroys pancreatic islets and subsequently leads to insulin-deficient diabetes mellitus, were studied. Linomide, given in the drinking water or added to tissue cultures in vitro, inhibited the beta1 integrin-mediated adhesion of T cells to ECM, FN and LN, as well as the production and release of TNFalpha and NO, which play a major role in the induction and propagation of T cell-mediated insulitis. In addition, exposure of T cells to Linomide resulted in increased expression of CD44 and ICAM-1 molecules on spleen cells of Linomide-treated mice; such an increase in adhesion molecule expression may lead to more effective arrest of T cell migration in vivo. The regulation of T-cell adhesion, adhesion receptor expression, and inhibition of TNFalpha and NO secretion by Linomide may explain its beneficial role and provide a new tool for suppressing self-reactive T cell-dependent autoimmune diseases.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge