English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Respirology 2019-Jun

Effect of age on the cardiovascular remodelling induced by chronic intermittent hypoxia as a murine model of sleep apnoea.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Anabel Castro-Grattoni
Monique Suarez-Giron
Ivan Benitez
Marta Torres
Isaac Almendros
Ramon Farre
Josep Montserrat
Mireia Dalmases
David Gozal
Manuel Sánchez-de-la-Torre

Keywords

Abstract

Chronic intermittent hypoxia (CIH) is a major determinant of the cardiovascular morbidity associated with obstructive sleep apnoea (OSA), and the magnitude of CIH impact may be influenced by ageing. Here, we assessed the role of ageing in the early cardiovascular structural remodelling induced by severe CIH in a murine model of OSA.

METHODS
Cardiovascular remodelling was assessed in young (2 months old, n = 20) and aged (18 months old, n = 20) C57BL/6 female mice exposed to CIH (20% O2 for 40 s, 5% O2 for 20 s) or normoxia (room air) for 8 weeks (6 h/day).

Early vascular remodelling was observed in young mice exposed to CIH as illustrated by intima-media thickening (mean change: 4.6 ± 2.6 μm; P = 0.02), elastin fibre disorganization (mean change: 9.2 ± 4.5%; P = 0.02) and fragmentation (mean change: 2.5 ± 0.8%; P = 0.03), and collagen (mean change: 3.2 ± 0.6%; P = 0.001) and mucopolysaccharide accumulation (mean change: 2.4 ± 0.8%; P = 0.01). In contrast, vascular remodelling was not apparent in aged mice exposed to CIH. Furthermore, left ventricular perivascular fibrosis (mean change: 0.71 ± 0.1; P < 0.001) and hypertrophy (mean change: 0.17 ± 0.1; P = 0.038) were increased by CIH exposure in young mice, but not in aged mice. Principal component analysis identified similar cardiovascular alterations among the young mice exposed to CIH and both older mouse groups, suggesting that CIH induces premature cardiovascular senescence.Cardiovascular remodelling induced by severe CIH is affected by the age at which CIH onset occurs, suggesting that the deleterious cardiovascular effects associated with CIH may be more pronounced in younger populations, and such changes resemble chronological age-related declines in cardiovascular structural integrity.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge