English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Cancer Research 1996-May

Effect of amount and types of dietary fat on intestinal bacterial 7 alpha-dehydroxylase and phosphatidylinositol-specific phospholipase C and colonic mucosal diacylglycerol kinase and PKC activities during stages of colon tumor promotion.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
B S Reddy
B Simi
N Patel
C Aliaga
C V Rao

Keywords

Abstract

It is evident from many studies that the effect of dietary fat on colon tumor promotion depends not only on the amount of fat but especially on fatty acid composition. Animal model studies have shown that diets which are high in omega-6 fatty acids increase colon tumor promotion, whereas diets rich in omega-3 fatty acids have no such enhancing effect. The mechanisms by which the high fat content of the diet promotes colon carcinogenesis may include the production of secondary bile acids in the colon and the modulation of colonic luminal bacterial 7 alpha-dehydroxylase that is involved in generating secondary bile acids, phosphatidylinositol-specific phospholipase C (PI-PLC), and mucosal PI-PLC, as well as diacylglycerol (DAG) kinase and protein kinase C (PKC). In the present study, we investigated the effect of high-fat diets that are rich in omega-3 and omega-6 fatty acids on cecal bacterial 7 alpha-dehydroxylase and PI-PLC, fecal secondary bile acids, and colonic mucosal DAG kinase and PKC activities during different stages of colon carcinogenesis in male F344 rats. At 5 weeks of age, groups of animals were fed a low-fat diet containing 5% corn oil (LFCO). Beginning at 7 weeks of age, all animals, except those intended as vehicle controls, received azoxymethane (AOM) s.c. once weekly for 2 weeks at a dose rate of 15 mg/kg body weight. Vehicle-treated groups received s.c. injections of normal saline. One day after the second AOM or saline treatment, the experimental groups of animals were transferred to a high-fat diet containing 23.5% corn oil (HFCO) or 20.5% fish oil + 3% corn oil (HFFO). One group continued on the LFCO diet. Animals were sacrificed at weeks 1, 12, and 36 after the AOM or saline treatment. Colonic mucosa were harvested at weeks 1, 12, or 36, and the colonic tumor tissues were examined for PKC and DAG kinase activities. Contents of the cecum were analyzed for bacterial 7 alpha-dehydroxylase and PI-PLC activities. Stool samples collected at week 12 were analyzed for bile acids. High corn oil content of the diet significantly increased the cecal bacterial 7 alpha-dehydroxylase and PI-PLC activities as compared to the diets with high fish oil or low corn oil content. Animals fed the HFCO diet excreted higher levels of secondary bile acids, such as deoxycholic acid and lithocholic acid, than those fed the LFCO or HFFO diets. Carcinogen treatment significantly enhanced the activities of DAG kinase and total membrane PKC activities in colonic mucosa compared to saline treatment in all dietary groups. Animals treated with saline or AOM and fed HFCO showed increased levels of DAG kinase and membrane PKC activities in the colonic mucosa when compared to LFCO and HFFO groups. DAG kinase and membrane PKC activities were higher in colon tumors than in the surrounding colonic mucosa, and also increased levels of these enzyme activities were found in the HFCO diet group. These results indicate that the modifying effect of dietary fat on colonic bacterial enzymes, secondary bile acids, colonic mucosal and tumor DAG kinase, and PKC that may play a role in colon carcinogenesis depends on the types and amount of fat given. The colon tumor-enhancing effect of a HFCO diet in contrast to the high dietary fish oil may be, in part, explained on the basis of its modulating effect on these bacterial and colonic mucosal enzymes and colonic secondary bile acids relevant to colon tumor promotion.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge