English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Oncology Reports 2012-Jan

Effect of berberine on p53 expression by TPA in breast cancer cells.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Sangmin Kim
Jeonghun Han
Nam-Young Kim
Se Kyung Lee
Dong Hui Cho
Min-Young Choi
Jee Soo Kim
Jung-Han Kim
Jun-Ho Choe
Seok Jin Nam

Keywords

Abstract

Berberine (BBR), an isoquinoline derivative alkaloid compound, has been reported to have anti-oxidant and anti-carcinogenic effects. A loss of functional p53 is involved with an increased risk of cancer proliferation and metastasis. Here, we investigated the effect of BBR on the transcriptional activity and the protein expression of p53 in p53-positive (wild- type, MCF7 cells) and p53-negative (mutant, MDA-MB231 cells) human breast cancer cells. Our results showed that the basal level of p53 mRNA and protein expression was increased by BBR treatment. However, tumor promoter, TPA, decreased the level of p53 mRNA and protein expression in MCF7 cells with wild-type p53. In addition, TPA-induced down-regulation of p53 mRNA and protein expression was increased by UO126, but not by SP600125 and SB203580. To verify the regulatory mechanism of p53 protein expression, we investigated the effects of proteasomal inhibitors (ALLN and MG132) or a lysosomal inhibitor (chloroquine) on TPA-induced down-regulation of p53. We observed that TPA-induced down-regulation of p53 protein was prevented by ALLN and MG132, but not by chloroquine. Further, we investigated the effect of BBR on TPA-induced down-regulation of p53 mRNA and protein levels. Interestingly, the levels of TPA-induced down-regulation of p53 mRNA and protein were prevented by BBR, but MDA-MB231 cells with mutated p53 were not affected. In addition, TPA-induced down-regulation of p53 mRNA was also prevented by BBR. Taken together, we suggest that BBR may be used as an effective ingredient for anticancer products, which trigger the transcriptional activity and the inhibition of the degradation of p53, a tumor suppressor gene, in human breast cancer.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge