English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Journal of Radiation Oncology Biology Physics 2002-Nov

Effect of carbogen on tumor oxygenation: combined fluorine-19 and proton MRI measurements.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Xiaobing Fan
Jonathan N River
Marta Zamora
Hania A Al-Hallaq
Gregory S Karczmar

Keywords

Abstract

OBJECTIVE

Blood oxygen level dependent (BOLD) contrast in magnetic resonance imaging (MRI) has been widely used for noninvasive evaluation of the effects of tumor-oxygenating agents. However, there have been few tests of the validity of this method. The goal of the present work was to use the T(1) of fluorine-19 in perfluorocarbon (PFC) emulsions as a "gold standard" for comparison with BOLD MRI. MATHODS AND MATERIALS: Rats bearing R3230AC tumors implanted in the hind limb were injected with an emulsion of perfluoro-15-crown-5-ether for 2-3 days before experiments, which ensured that the PFC emulsion concentrated in the tumors. We correlated changes in tumor oxygenation caused by carbogen inhalation measured by (1)H BOLD MRI with quantitative (19)F measurements. The (19)F spin-lattice relaxation rate R(1) (= 1/T(1)) was measured to determine initial oxygen tension (pO(2)) in each image pixel containing the PFC, and changes in pO(2) during carbogen (95% O(2), 5% CO(2)) breathing. In a second carbogen breathing period, changes in water signal linewidth were measured using high spectral and spatial resolution imaging. (19)F and (1)H measurements were used to classify pixels as responders to carbogen (pixels where oxygen increased significantly) or nonresponders (no significant change in tumor oxygenation).

RESULTS

The (19)F and (1)H measurements agreed in 65% +/- 11% of pixels (n = 14). Agreement was even stronger among pixels where (1)H showed increased oxygenation; (19)F measurements agreed with (1)H measurements in over 79% +/- 11% of these pixels. Similarly, there was strong agreement between the two modalities in pixels where (19)F reported no change in pO(2); (1)H also showed no changes in 76% +/- 18% of these pixels. Quantitative correlation of changes T(2)* (DeltaT(2)*) in (1)H and changes R(1) (DeltaR(1)) in (19)F was weak during carbogen breathing, and averaged over the whole tumor was approximately 0.40 for 14 experiments. However, the spatial patterns of (1)H and (19)F changes were qualitatively very similar. In hypoxic regions that were identified based on long (19)F T(1) (>2.53 s), (19)F and (1)H MRI agreed that carbogen had relatively weak effects.

CONCLUSIONS

These results suggest that (1)H BOLD MRI reliably identifies increases in tumor pO(2). In hypoxic regions where increases in pO(2) are most desirable, carbogen was ineffective. The data suggest that (19)F and (1)H MRI can be used individually or in combination to guide the design of improved tumor-oxygenating agents.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge