English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biology of the neonate 1994

Effect of cyclooxygenase inhibition on brain cell membrane lipid peroxidation during hypoxia in newborn piglets.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
J E McGowan
J C McGowan
O P Mishra
M Delivoria-Papadopoulos

Keywords

Abstract

To test the hypothesis that indomethacin, an inhibitor of cyclooxygenase, reduces free radical-induced brain cell membrane changes during cerebral hypoxia, we determined levels of brain cell membrane lipid peroxidation products and Na+,K(+)-ATPase activity as indicators of free radical production and membrane function, respectively, in 29 newborn piglets divided into 4 groups. Eight saline- and 4 indomethacin-treated normoxic animals served as controls; 8 saline-pretreated piglets and 9 piglets pretreated with indomethacin were exposed to hypoxic hypoxia for 60 min. Cerebral hypoxia was documented using 31P-NMR spectroscopy. In saline-pretreated hypoxic animals Na+,K(+)-ATPase activity decreased significantly and levels of membrane lipid peroxidation products increased significantly compared to normoxic controls. Indomethacin pretreatment prevented the hypoxia-induced increase in membrane lipid peroxidation products but had no effect on the decrease in Na+,K(+)-ATPase activity. Thus the apparent reduction in free radical production by indomethacin pretreatment did not prevent the hypoxia-induced change in Na+,K(+)-ATPase activity.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge