English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Clinical Oral Investigations 2017-Mar

Effect of different gutta-percha solvents on the microtensile bond strength of various adhesive systems to pulp chamber dentin.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Sezer Demırbuga
Kanşad Pala
Hüseyin Sinan Topçuoğlu
Muhammed Çayabatmaz
Gamze Topçuoğlu
Ebru Nur Uçar

Keywords

Abstract

OBJECTIVE

The aim of this study was to evaluate the effect of different endodontic solvents on the microtensile bond strength (μTBS) of various adhesives to pulp chamber dentin.

METHODS

A total of 120 human third molars were selected. Canals were prepared with the ProTaper Universal system and obturated. The access cavities were then restored with resin composite. After 1 week, a retreatment procedure was applied as follows: control, no solvent was applied to the pulp chamber and experimental groups, three different solvents (chloroform, eucalyptol, and orange oil) were applied to the pulp chamber for 2 min. The canal filling was removed and calcium hydroxide (Ca[OH]2) was placed into the canals. After 7 days, the Ca(OH)2 was removed from the canals and the canals were re-obturated. Teeth were then divided into three subgroups according to the adhesive used. The samples were restored with a nanohybrid resin composite using three different adhesives: Clearfil SE Bond (CSE), Adper Easy One (AEO), and Single Bond 2 (SB2). The samples were aged with thermocycling. Teeth were sectioned, and a total of 20 dentin sticks were obtained for each subgroup. μTBS testing was then performed. The debonded surfaces were evaluated using scanning electron microscopy (SEM) analysis. Data were analyzed using two-way ANOVA and Tukey's post hoc tests.

RESULTS

Chloroform showed statistically lower mean μTBS values (14 ± 7.2 MPa) than control group did (19.2 ± 6.1 MPa) (p < 0.05). Orange oil (18.1 ± 6.3 MPa) and eucalyptol (16.9 ± 6.8 MPa) did not reduce the mean μTBS statistically (p > 0.05). Chloroform showed significantly lower bond strength for all adhesives (p < 0.05). Whereas orange oil did not reduce the mean μTBS values of all adhesive systems significantly (p > 0.05), eucalyptol reduced the μTBS values of all the groups, but the results were only statistically significant for SB2 (p < 0.05). CSE showed statistically higher bond strength (20.4 ± 6.8 MPa) than AEO (14.6 ± 5.3 MPa) and SB2 (16.3 ± 7.2 MPa) did (p < 0.05). There were no statistical differences between AEO and SB2 (p > 0.05). According to the SEM analysis of the debonded surfaces, adhesive failures were the most common type in all the groups, followed by mixed failures.

CONCLUSIONS

While chloroform reduced the mean bond strength of the adhesive resins, orange oil did not affect the bond strength of the adhesives. The effect of eucalyptol on bond strength depended on the type of adhesive system.

CONCLUSIONS

This study shows that endodontic solvents could affect the microtensile bond strength of adhesives to pulp chamber dentin.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge