English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Neurotrauma 1996-Feb

Effect of difluoromethylornithine treatment on regional ornithine decarboxylase activity and edema formation after experimental brain injury.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
M K Başkaya
A M Rao
L Puckett
M R Prasad
R J Dempsey

Keywords

Abstract

This study examined the effect of difluoromethylornithine (DFMO) on regional activities of ornithine decarboxylase (ODC) and edema formation in bilateral cerebral cortex and hippocampus after a unilateral controlled cortical-impact (CCI) injury in rats. To measure the activity of ODC, the brains of injured and control rats were frozen in situ at 30 min, 3, 6, and 24 h after CCI brain injury of moderate severity. The specific gravity, an indicator of edema formation, was examined in decapitated animals at corresponding time points. Brain injury induced significant increases of ODC in the ipsilateral hippocampus, adjacent and injury-site cortices, and in the contralateral cortex and hippocampus at 3 and 6 h after injury. No significant edema formation was found in any brain region at 30 min after injury. A significant edema formation was first found only in the injury-site cortex at 3 h after injury. At 6 and 24 h after injury, significant edema was found in all regions ipsilateral to the injury-site. At 24 h after injury, significant but less severe edema was also found in the contralateral cortex and hippocampus. DFMO, an irreversible inhibitor of ODC, abolished the increase in ODC in all regions. It also attenuated edema formation in the adjacent cortex and in the contralateral cortex and hippocampus. These findings indicate that polyamines may play a role in posttraumatic brain edema formation, particularly in important brain regions remote from the injury-site.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge