English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Lung 1991

Effect of edema on segmental vascular resistance in isolated perfused rat lungs.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
R Hillyard
J Anderson
J U Raj

Keywords

Abstract

We have determined the effect of hydrostatic edema on total and segmental vascular resistances in the rat lung. Lungs of 12 adult rats, body weight 515 +/- 42 g, were isolated and perfused with blood. To investigate the role of vasoactivity on edema effects, we studied two groups of lungs; group I (n = 6) were untreated and group II (n = 6) were treated with papaverine hydrochloride to paralyze the vasculature. Initially blood flow was adjusted to keep pulmonary artery pressure approximately 15 cmH2O, left atrial and airway pressures being 8 and 7 cmH2O, respectively, and then kept unchanged thereafter (18 +/- 3 ml/kg/min). Hydrostatic edema was induced by raising venous pressure and pulmonary artery pressure measured continuously. In 4 lungs from each group, during baseline and after the development of severe edema, we partitioned the pulmonary circulation into arteries, microvessels, and veins by measuring pressures in 20-50 microns diameter subpleural arterioles and venules with the micropipette-Servonull method. Baseline total vascular resistance was similar in the two groups. Interstitial and early alveolar edema did not affect pulmonary vascular pressures. With severe edema (W/D ratio: 17 +/- 2), pressures in pulmonary artery and arterioles increased significantly in both groups; venular pressures did not change. Total resistance increased by 250% in group I and by 224% in group II lungs. Arterial resistance increased 3-5-fold in both groups, as did microvascular resistance. Venous resistances also increased in both groups, although to a lesser extent. The increase in total and segmental vascular resistances was not significantly different in the two groups of lungs. We conclude that in isolated rat lungs only severe edema results in an increase in total vascular resistance, mainly due to an increase in arterial and microvascular resistances, with a smaller increase in venous resistance. This appears to be a mechanical effect of edema on the vasculature and not a result of active vasomotion.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge