English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Life Sciences 2002-Jun

Effect of naturally occurring organosulfur compounds on nitric oxide production in lipopolysaccharide-activated macrophages.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Katsunari Ippoushi
Hidekazu Itou
Keiko Azuma
Hisao Higashio

Keywords

Abstract

Excessive nitric oxide (NO) production is involved in cellular injury and possibly in the multistage process of carcinogenesis. In this study, we investigated the effect of organosulfur compounds (S-allyl cysteine, allyl sulfide, diallyl disulfide, allyl isothiocyanate, phenyl isothiocyanate, and benzyl isothiocyanate) that are found in allium or cruciferous vegetables on NO production in J774.1 macrophages activated with lipopolysaccharide (LPS). Diallyl disulfide, allyl, phenyl, and benzyl isothiocyanates inhibited NO production, as evaluated by nitrite formation at 25 microM. Allyl and benzyl isothiocyanates, the most active of the six organosulfur compounds, exhibited dose-dependent inhibition and had IC(50) values of 1.6 and 2.7 microM, respectively. Western blot analysis suggested that suppression of the induction of inducible NO synthase (iNOS) expression is responsible for the inhibition of NO production by allyl and benzyl isothiocyanates. In contrast, these isothiocyanates increased LPS-stimulated tumor necrosis factor alpha (TNF-alpha) release, suggesting their selective action on genes activated by LPS. Our results demonstrate that certain organosulfur compounds inhibit NO synthesis in LPS-activated macrophages, and the inhibitory effect may be a significant component of their anticarcinogenic activity.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge