English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Human and Experimental Toxicology 2007-Dec

Effect of sulphated polysaccharides on erythrocyte changes due to oxidative and nitrosative stress in experimental hyperoxaluria.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
C K Veena
A Josephine
S P Preetha
P Varalakshmi

Keywords

Abstract

Kidney stones are known to haunt humanity for centuries and increase in oxalate is a predominant risk factor for stone formation. The present study was initiated with a notion to study the oxidative and nitrosative stress on erythrocytes under oxalate stress and the putative role of sulphated polysaccharides. Hyperoxaluria was induced in two groups by the administration of 0.75% ethylene glycol in drinking water for 28 days and one of them was treated with sulphated polysaccharides from Fucus vesiculosus from the 8th day to the end of the experimental period of 28 days at a dose of 5 mg/kg body weight subcutaneously. Control and drug control (sulphated polysaccharides alone) were also included in the study. Glycolic and glyoxylic acid levels of urine were analyzed as an index of hyperoxaluria. The plasma enzymic markers of cellular integrity, redox status of red blood cells, osmotic fragility, and (14)C-oxalate binding were investigated. Urine and plasma nitric oxide metabolites, expression of inducible nitric oxide synthase protein, and mRNA were assessed in kidney to evaluate the nitrosative stress. Increased levels of glycolic and glyoxylic acid in urine indicated the prevalence of hyperoxaluria in ethylene glycol-administered groups. Plasma aspartate and alanine transaminase were not altered, but alkaline phosphatase and lactate dehydrogenase of hyperoxaluric group were increased indicating tissue damage. Activities of antioxidant enzymes were decreased, whereas erythrocyte membrane lipid peroxidation was increased in hyperoxaluric rats. Moreover, an altered fragility with an increase in oxalate binding activity was observed in hyperoxaluric group. Increase in nitric oxide metabolites levels in urine and plasma along with an increase in expression of inducible nitric oxide synthase protein and mRNA in kidney were observed in hyperoxaluric rats. Administration of sulphated polysaccharides to hyperoxaluric rats averted the abnormal increase in urinary glycolic and glyoxylic acid levels and enzyme activities, decreased lipid peroxidation, and increased the activities of antioxidant enzymes. Furthermore, increased nitrosative stress accompanying hyperoxaluria was also normalized on sulphated polysaccharides treatment. To conclude, sulphated polysaccharide administration was able to maintain the integrity of erythrocyte membrane and decrease the damage to erythrocytes in hyperoxaluria.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge