English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Agricultural and Food Chemistry 2005-Feb

Effect of temperature, elevated carbon dioxide, and drought during seed development on the isoflavone content of dwarf soybean [Glycine max (L.) Merrill] grown in controlled environments.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Charles R Caldwell
Steven J Britz
Roman M Mirecki

Keywords

Abstract

The effects of elevated temperature, carbon dioxide, and water stress on the isoflavone content of seed from a dwarf soybean line [Glycine max (L.) Merrill] were determined, using controlled environment chambers. Increasing the temperature from 18 degrees C during seed development to 23 degrees C decreased total isoflavone content by about 65%. A further 5 degrees C increase to 28 degrees C decreased the total isoflavone content by about 90%. Combining treatments at elevated temperature with elevated CO(2) (700 ppm) and water stress to determine the possible consequences of global climate change on soybean seed isoflavone content indicated that elevated CO(2) at elevated temperatures could partially reverse the effects of temperature on soybean seed isoflavone content. The addition of drought stress to plants grown at 23 degrees C and elevated CO(2) returned the total isoflavone levels to the control values obtained at 18 degrees C and 400 ppm CO(2). The promotive effects of drought and elevated CO(2) at 23 degrees C on the 6' '-O-malonygenistin and genistin levels were additive. The individual isoflavones often had different responses to the various growth conditions during seed maturation, modifying the proportions of the principal isoflavones. Therefore, subtle changes in certain environmental factors may change the isoflavone content of commercially grown soybean, altering the nutritional values of soy products.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge