English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Clinical and Experimental Pharmacology and Physiology 2003-Oct

Effect of tetramethylpyrazine on potassium channels to lower calcium concentration in cultured aortic smooth muscle cells.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Kar-Lok Wong
Paul Chan
Wei-Chan Huang
Tzyy-Lin Yang
I-Min Liu
Tung-Yuan Lai
Chin-Chuan Tsai
Juei-Tang Cheng

Keywords

Abstract

1. Tetramethylpyrazine (TMP) is one of the active principles contained in Ligusticum chuanxiong Hort. (Umbelliferae), a herb that has been used widely in China to treat vascular disorders. 2. In an attempt to elucidate the possible mechanisms of action of TMP, the effect of TMP on intracellular calcium concentrations ([Ca2+]i) was investigated in cultured vascular smooth muscle (A7r5) cells using the Ca(2+)-sensitive dye Fura-2 as an indicator. 3. The increase in [Ca2+]i in A7r5 cells produced by vasopressin (1 micromol/L) or phenylephrine (1 micromol/L) was attenuated by TMP in a concentration-dependent manner. Only inhibitors specific to ATP-sensitive potassium (KATP) channels or small conductance calcium-activated potassium (SKCa) channels attenuated the action of TMP (10 micromol/L) on [Ca2+]i. However, blockers of other K+ channels failed to modify the inhibitory action of TMP (10 micromol/L) on [Ca2+]i. 4. The action of TMP on membrane potential in A7r5 cells was monitored by the fluorescence of bisoxonol. Tetramethylpyrazine caused a concentration-dependent inhibition of changes in membrane potential elicited by KCl (20 mmol/L) or phenylephrine (1 micro mol/L), an effect that was totally reversed by glibenclamide (100 micromol/L) and apamin (100 nmol/L) in combination. 5. The results obtained indicate that the decrease in [Ca2+]i in A7r5 cells produced by TMP is mediated mainly by opening of KATP and/or SKCa channels.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge