English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Ecotoxicology and Environmental Safety 2019-Nov

Effect of the pyrolysis duration and the addition of zeolite powder on the leaching toxicity of copper and cadmium in biochar produced from four different aquatic plants.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Zhongchuang Liu
Bangjun Lu
Benyang He
Xiang Li
Li-Ao Wang

Keywords

Abstract

The study aimed to determine the biochar yield of four aquatic plants, the leaching toxicity of copper (Cu) and cadmium (Cd) in the biochar, and the stabilization characteristics of the biochar produced under different pyrolysis conditions (at 350 °C for 1, 2, and 3 h and absence/presence of zeolite powder). The results showed that different plant species required a different pyrolysis duration and the presence or absence of zeolite powder. The stabilization of Cu and Cd was significantly affected by the pyrolysis duration and the external materials for different plant species and different types of admixtures. Pyrolysis temperatures over 350 °C for 1 h without zeolite powder generated stable Cu and Cd in goldfish algae (Ceratophyllum demersum L.), foxtail algae (Myriophyllum verticillatum L.), and penny grass (Hydrocotyle vulgaris). Pyrolysis temperatures over 350 °C for 1 h with zeolite powder made Cu and Cd stable in water celery (Oenanthe javanica (Bl.) DC). The addition of zeolite powder during pyrolysis was possible due to the weight reduction efficiency in plants with Cu and Cd. Furthermore, the surface of the biochar with the zeolite powder showed honeycombs and a spongy porous structure. The duration of the pyrolysis had little effect on the honeycomb pore structure.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge