English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences 2008-Nov

Effect of the solute molecular structure on its enantioresolution on cellulose tris(3,5-dimethylphenylcarbamate).

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Rahul B Kasat
Siao Yee Wee
Ji Xian Loh
Nien-Hwa Linda Wang
Elias I Franses

Keywords

Abstract

The effects of the molecular structures for 13 structurally similar chiral solutes on their HPLC retention and enantioresolutions on a commercially important polysaccharide-based chiral stationary phase, cellulose tris(3,5-dimethylphenylcarbamate) (CDMPC) are studied. Among these 13 solutes, only methyl ephedrine (MEph) shows significant enantioresolution. The retention factors of these chiral solutes vary significantly from 0.7 to 3.2 in n-hexane/2-propanol (90/10, v/v) at 298 K. The retention factors of some simpler non-chiral solutes having similar but fewer functional groups than their chiral counterparts are also studied under the same conditions and are compared to those of the chiral solutes. The H-bonding interactions between the functional groups of the solute and the C=O and NH functional groups of the polymer are probed with attenuated total reflection-infrared spectroscopy (ATR-IR) for the polymer, for binary sorbent-solute systems. The CDMPC IR amide band wavenumbers change significantly, indicating H-bonding interactions of the polymer C=O and NH groups with the solutes. The elution orders predicted for the enantiomers of these chiral solutes using molecular dynamics (MD) simulations of the polymer-solute binary systems are consistent with the HPLC results. The CDMPC cavity nano-structure and the potential interactions with chiral solutes are proposed based on HPLC data, IR data, and the simulations. The results are consistent with the three-point attachment model and support the hypothesis that significant enantioresolution requires at least three different synergistic interactions which can be a combination of steric hindrance, H-bonding, or pi-pi interactions.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge