English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
BMC Ecology 2014-May

Effects of Bromelia pinguin (Bromeliaceae) on soil ecosystem function and fungal diversity in the lowland forests of Costa Rica.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Caitlin I Looby
William D Eaton

Keywords

Abstract

BACKGROUND

Bromelia pinguin (Bromeliaceae) is a terrestrial bromeliad commonly found under forest stands throughout the Neotropics that has been shown to have antifungal activity in vitro. We have hypothesized that this bromeliad would also have an effect on the fungal populations in nearby soil by decreasing fungaldiversity and negatively impacting C and N cycle-related activities. A previous study in the lowland forest of Costa Rica showed the soil beneath these bromeliads had decreased fungal ITS DNA and differences in C and N levels compared to adjacent primary forest soils.

RESULTS

In this follow-up study, we found that the bromeliad soils had lower rates of C and N biomass development and lower phenol oxidase activity (suggesting less decreased fungal decomposition activity). The results of T-RFLP and cloning-based taxonomic analyses showed the community level diversity and abundance of fungal ITS DNA was less in bromeliad soils. Sequence analysis of fungal ITS DNA clones showed marked differences in fungal community structure between habitats of Basidiomycota (Tremellales, Agricales, Thelephorales), Ascomycota (Helotiales), and Zycomycota populations.

CONCLUSIONS

The data show there to be differences in the soil nutrient dynamics and fungal community structure and activity associated with these bromeliads, as compared to the adjacent primary forest. This suggests the possibility that the anti-fungal activity of the bromeliad extends into the soil. The bromeliad-dense regions of these primary forest habitats provide a unique natural micro-habitat within the forests and the opportunity to better identify the role of fungal communities in the C and N cycles in tropical soils.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge