English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Agricultural and Food Chemistry 2015-Jul

Effects of D-Pinitol on Insulin Resistance through the PI3K/Akt Signaling Pathway in Type 2 Diabetes Mellitus Rats.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Yunfeng Gao
Mengna Zhang
Tianchen Wu
Mengying Xu
Haonan Cai
Zesheng Zhang

Keywords

Abstract

D-pinitol, a compound isolated from Pinaceae and Leguminosae plants, has been reported to possess insulin-like properties. Although the hypoglycemic activity of D-pinitol was recognized in recent years, the molecular mechanism of D-pinitol in the treatment of diabetes mellitus remains unclear. In this investigation, a model of type 2 diabetes mellitus (T2DM) with insulin resistance was established by feeding a high-fat diet (HFD) and injecting streptozocin (STZ) to Sprague-Dawley (SD) rats, targeting the exploration of more details of the mechanism in the therapy of T2DM. D-pinitol was administrated to the diabetic rats as two doses [30, 60 mg/(kg·body weight·day)]. The level of fasting blood glucose (FBG) was decreased 12.63% in the high-dosage group, and the ability of oral glucose tolerance was improved in D-pinitol-treated groups. The biochemical indices revealed that D-pinitol had a positive effect on hypoglycemic activity. Western boltting suggested that D-pinitol could promote the expression of the phosphatidylinositol-3-kinase (PI3K) p85, PI3Kp110, as well as the downstream target protein kinase B/Akt (at Ser473). Besides, D-pinitol inhibited the expression of glycogen synthesis kinase-3β (GSK-3β) protein and regulated the expression of glycogen synthesis (GS) protein and then accelerated the glycogen synthesis. Above all, D-pinitol played a positive role in regulating insulin-mediated glucose uptake in the liver through translocation and activation of the PI3K/Akt signaling pathway in T2DM rats.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge