English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Periodontal Research 2012-Apr

Effects of L-ascorbic acid 2-phosphate magnesium salt on the properties of human gingival fibroblasts.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
K Tsutsumi
H Fujikawa
T Kajikawa
M Takedachi
T Yamamoto
S Murakami

Keywords

Abstract

OBJECTIVE

L-Ascorbic acid 2-phosphate magnesium salt (APM) is an L-ascorbic acid (AsA) derivative developed to improve AsA stability and display effective biochemical characteristics. This study aimed to investigate the effects of APM on the functions and properties of human gingival fibroblasts with respect to the prevention of periodontal disease in comparison with those of AsA.

METHODS

Human gingival fibroblasts were incubated in the presence or absence of APM or L-ascorbic acid sodium salt (AsANa). Intracellular AsA was analysed by HPLC. Collagen synthesis was measured by ELISA and real-time RT-PCR. Intracellular reactive oxygen species (ROS) induced by hydrogen peroxide (H(2)O(2)) were quantified using a fluorescence reagent, and cell damage was estimated with calcein acetoxymethyl ester. Furthermore, intracellular ROS induced by tumor necrosis factor-α (TNF-α) were quantified, and expression of TNF-α-induced interleukin-8 expression, which increases due to inflammatory reactions, was measured by ELISA and real-time RT-PCR.

RESULTS

APM remarkably and continuously enhanced intracellular AsA and promoted type 1 collagen synthesis and mRNA expression. Furthermore, APM decreased cell damage through the suppression of H(2)O(2)-induced intracellular ROS and inhibited interleukin-8 production through the suppression of TNF-α-induced intracellular ROS. These effects of APM were superior to those of AsANa.

CONCLUSIONS

These results suggest that APM is more effective than AsANa in terms of intake, collagen synthesis, decreasing cell damage and inhibiting interleukin-8 expression in human gingival fibroblasts. This suggests that local application of APM can help to prevent periodontal disease.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge