English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
The International journal of oral & maxillofacial implants 2019-Nov/Dec

Effects of Mechanical Instrumentation with Commercially Available Instruments Used in Supportive Peri-implant Therapy: An In Vitro Study.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Benyapha Sirinirund
Carlos Garaicoa-Pazmino
Hom-Lay Wang

Keywords

Abstract

To evaluate topographic changes and effectiveness of mechanical instrumentation upon machined (MA) and roughened (RG) surfaces of dental implants.

MATERIALS AND METHODS
The coronal one-third of seven RG and seven MA implants was coated with a mixture of cyanoacrylate and toluidine blue dye to resemble calculus. Implants were cleaned with three curettes (SS: stainless steel, PT: plastic, TI: titanium), two ultrasonic tips (UM: metal tip, UP: plastic tip), a titanium brush (TB), and an air-polishing device (AA) until visibly clean. Additionally, a simulation of 1- and 5-year supportive peri-implant therapy (SPT) was performed on 14 implants using the aforementioned instruments with 20 strokes/40 s (T1) or 100 strokes/200 s (T5). Each implant was evaluated using stereomicroscopy, atomic force microscopy, and scanning electron microscopy.

RESULTS
UM was the most effective instrument, with 0% average percentage of residual artificial calculus (RAC), followed by TB (2.89%) and UP (4.90%). SS was more effective than TI (15.43% vs 20.12% RAC, respectively), while PT failed to remove any deposit (100% RAC). AA completely removed deposits on RG surfaces but not MA surfaces (26.61% RAC). Noticeable topographic changes were observed between both implant surfaces. RG surfaces became less rough, whereas MA surfaces became rougher at both T1 and T5 with the exception of AA. Plastic- and titanium-like remnants were noted after debridement with PT, SS, and TI, respectively.

Artificial calculus removal by mechanical instrumentation, with the exception of PT, was proven to be clinically effective. All instruments induced minor to major topographic changes upon dental implant surfaces. AA did not remarkably change MA and RG surfaces at both micrometer and nanometer levels. Findings from this study may impact the selection of instruments or devices used during SPT protocols.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge