English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Caries Research 2009

Effects of alpha-amylase and its inhibitors on acid production from cooked starch by oral streptococci.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
S Aizawa
H Miyasawa-Hori
K Nakajo
J Washio
H Mayanagi
S Fukumoto
N Takahashi

Keywords

Abstract

This study evaluated acid production from cooked starch by Streptococcus mutans, Streptococcus sobrinus, Streptococcus sanguinis and Streptococcus mitis, and the effects of alpha-amylase inhibitors (maltotriitol and acarbose) and xylitol on acid production. Streptococcal cell suspensions were anaerobically incubated with various carbohydrates that included cooked potato starch in the presence or absence of alpha-amylase. Subsequently, the fall in pH and the acid production rate at pH 7.0 were measured. In addition, the effects of adding alpha-amylase inhibitors and xylitol to the reaction mixture were evaluated. In the absence of alpha-amylase, both the fall in pH and the acid production rate from cooked starch were small. On the other hand, in the presence of alpha-amylase, the pH fell to 3.9-4.4 and the acid production rate was 0.61-0.92 micromol per optical density unit per min. These values were comparable to those for maltose. When using cooked starch, the fall in pH by S. sanguinis and S. mitis was similar to that by S. mutans and S. sobrinus. For all streptococci, alpha-amylase inhibitors caused a decrease in acid production from cooked starch, although xylitol only decreased acid production by S. mutans and S. sobrinus. These results suggest that cooked starch is potentially acidogenic in the presence of alpha-amylase, which occurs in the oral cavity. In terms of the acidogenic potential of cooked starch, S. sanguinis and S. mitis were comparable to S. mutans and S. sobrinus. Alpha-amylase inhibitors and xylitol might moderate this activity.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge