English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Applied Physiology 1988-May

Effects of aminophylline on hypoxemia-induced ventilatory depression in the cat.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
S Javaheri
L J Teppema
J A Evers

Keywords

Abstract

We designed experiments to evaluate changes in ventral medullary (VM) extracellular fluid (ECF) PCO2 and pH during hypoxemia-induced ventilatory depression (VD). Our aim was to investigate effects of aminophylline on VD and VM ECF acid-base variables. We used aminophylline because it inhibits adenosine, which is released within the brain during hypoxemia and could mediate VD. Experiments were performed in seven cats with acute bilateral denervation of carotid sinus nerves and vagi. Cats were anesthetized with chloralose-urethan and breathed spontaneously at a regulated and elevated arterial PCO2 (PaCO2). Measurements were made during normoxemia, hypoxemia, and recovery before (phase I) and after (phase II) aminophylline. By use of strict criteria for definition of VD, during phase II two kinds of responses were observed. Aminophylline prevented VD in five cats. In these cats in phase I, with mean arterial PO2 (PaO2) = 105 and PaCO2 = 42.2 Torr, VM ECF PCO2, [H+], and [HCO3-] were 59.5 +/- 8.6 Torr (mean +/- SD), 60.2 +/- 9.4 neq/l, and 23.1 +/- 3.7 meq/l, respectively. When mean PaO2 dropped to 49 Torr, ventilation decreased 21%, with only small changes in VM ECF acid-base variables. Studies were repeated 30 min after aminophylline (17 mg/kg iv). In phase II, during normoxemia (PaO2 = 110 Torr) VM ECF Pco2, [H+], and [HCO3-] were 55.4 +/- 8.1 Torr, 62.0 +/- 8.0 neq/l and 20.7 +/- 2.5 meq/l, respectively. During hypoxemia (PaO2 = 48 +/- 4 Torr) mean ventilation, VM ECF PCO2, [H+], and [HCO3-] did not change significantly.(ABSTRACT TRUNCATED AT 250 WORDS)

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge