English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Cellular Physiology 2019-Feb

Effects of carnitine palmitoyltransferases on cancer cellular senescence.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Lihuan Guan
Yixin Chen
Yongtao Wang
Huizhen Zhang
Shicheng Fan
Yue Gao
Tingying Jiao
Kaili Fu
Jiahong Sun
Aiming Yu

Keywords

Abstract

The carnitine palmitoyltransferase (CPT) family is essential for fatty acid oxidation. Recently, we found that CPT1C, one of the CPT1 isoforms, plays a vital role in cancer cellular senescence. However, it is unclear whether other isoforms (CPT1A, CPT1B, and CPT2) have the same effect on cellular senescence. This study illustrates the different effects of CPT knockdown on PANC-1 cell proliferation and senescence and MDA-MB-231 cell proliferation and senescence, as demonstrated by cell cycle kinetics, Bromodeoxyuridine incorporation, senescence-associated β-galactosidase activity, colony formation, and messenger RNA (mRNA) expression of key senescence-associated secretory phenotype factors. CPT1C exhibits the most substantial effect on cell senescence. Lipidomics analysis was performed to further reveal that the knockdown of CPTs changed the contents of lipids involved in mitochondrial function, and lipid accumulation was induced. Moreover, the different effects of the isoform deficiencies on mitochondrial function were measured and compared by the level of radical oxygen species, mitochondrial transmembrane potential, and the respiratory capacity, and the expression of the genes involved in mitochondrial function were determined at the mRNA level. In summary, CPT1C exerts the most significant effect on mitochondrial dysfunction-associated tumor cellular senescence among the members of the CPT family, which further supports the crucial role of CPT1C in cellular senescence and suggests that inhibition of CPT1C may represent as a new strategy for cancer treatment through the induction of tumor senescence.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge