English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochimica et Biophysica Acta - General Subjects 1987-Oct

Effects of cholera toxin on cyclic AMP accumulation and bone resorption in cultured mouse calvaria.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
M Ransjö
U H Lerner

Keywords

Abstract

We have utilized the adenylate cyclase stimulator, cholera toxin, as a tool to test the role of cyclic AMP as a mediator of the effects on bone resorption by the calcium-regulating hormones, parathyroid hormone (PTH) and calcitonin. The effects on bone resorption were studied in an organ culture system using calvarial bones from newborn mice. Cyclic AMP response was assayed in calvarial bone explants and isolated osteoblasts from neonatal mouse calvaria. Cholera toxin caused a dose-dependent cAMP response in calvarial bones, seen at and above approx. 1-3 ng/ml and calculated half-maximal stimulation (EC50) at 18 ng/ml. The stimulatory effect of cholera toxin could be potentiated by the phosphodiesterase inhibitor isobutylmethylxanthine (IBMX, 0.2 mmol/l). Cyclic AMP accumulation in the bones was maximal after 4-6 h, and thereafter declined. However, activation of the adenylate cyclase was irreversible and the total amount (bone + medium) of cAMP produced, in the presence of IBMX (0.2 mmol/l), increased with time, for at least 48 h. In osteoblast-like cells cholera toxin (1 microgram/ml) stimulated the cellular levels of cAMP with a peak after 60-120 min, which could be potentiated with IBMX. The total cAMP accumulation indicated an irreversible response. In short-term bone organ cultures (at most, 24 h) cholera toxin, at and above 3 ng/ml, inhibited the stimulatory effect of PTH (10 nmol/l) on 45Ca release from prelabelled calvarial bones. The inhibitory effect of cholera toxin (0.1 microgram/ml) on 45Ca release was significant after 6 h and the calculated IC50 value at 24 h was 11.2 ng/ml. Cholera toxin (0.1 microgram/ml) also inhibited PTH-stimulated (10 nmol/l) release of Ca2+, inorganic phosphate (Pi), beta-glucuronidase, beta-N-acetylglucosaminidase and degradation of organic matrix (release of 3H from [3H]proline-labelled bones) in 24 h cultures. 45Ca release from bones stimulated by prostaglandin E2 (1 mumol/l) and 1 alpha-hydroxyvitamin D3 (0.1 mumol/l) was also inhibited by cholera toxin (0.3 microgram/ml) in 24-h cultures. The inhibitory effect of cholera toxin on bone resorption was transient, and in long-term cultures (120 h) cholera toxin caused a dose-dependent, delayed stimulation of mineral mobilization (Ca2+, 45Ca, Pi), degradation of matrix and release of the lysosomal enzymes beta-glucuronidase and beta-N-acetylglucosaminidase.(ABSTRACT TRUNCATED AT 400 WORDS)

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge