English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Zhi wu sheng li yu fen zi sheng wu xue xue bao = Journal of plant physiology and molecular biology 2005-Aug

[Effects of cold-hardening on freezing tolerance and antioxidant enzyme activities in plantlets of Saussurea laniceps Hand.-Mazz].

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Yu-Zhen Chen
Feng-Lan Li

Keywords

Abstract

Living conditions for plants in the mountains become increasingly less favorable with increasing altitude. In the alpine region, the plants are commonly exposed to daily rather than seasonal temperature fluctuations and by frequent freezing temperature. To elucidate the freezing tolerance mechanism of alpine plants, Saussurea laniceps Hand.-Mazz. was used as a model plant. It is a perennial herbal plant distributed in alpine regions of Yunnan and Tibet of China. It can survive on mountains with elevations over 4000 m. Wild S. laniceps plants are propagated only by seeds in the alpine areas. Micropropagation of S. laniceps through seed was a desirable method to get enough seedlings for freezing research. Micropropagation through plantlets derived from germinated S. laniceps seeds collected from Tibet was achieved successfully. Activities of antioxidant enzyme and solute contents were investigated in plantlets of S. laniceps. Freezing tolerance in plantlets increased after 7 or 15 d of cold-hardening (Table 1). Cold-hardening (2 degrees C) increased the activities of SOD, peroxidase, and catalase (Fig.1) in plantlets. A similar increase was also observed in the protein and proline content (Fig.1), whereas soluble carbohydrates changed little (Fig.1). These results obtained suggest that the higher activities of SOD, peroxidase, and catalase, as well as the higher protein and proline content may be biochemical adaptation for freezing toleranc in cold-hardened S. laniceps plantlets. Interestingly, deacclimation was slow; even after the plants were placed again under a temperature of 21-23 degrees C for 5 d, the higher freezing hardiness, enzyme activities, protein and proline content acquired after cold acclimation remained. In conclusion, our plantlet cultures have proved to be good materials for experimentation on freezing resistance in study of freezing-resistance mechanism in the alpine plant S. laniceps.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge