English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Forensic Science International 2019-Aug

Effects of long term storage on secondary metabolite profiles of cannabis resin.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Karin Grafström
Kjell Andersson
Niclas Pettersson
Johanna Dalgaard
Simon Dunne

Keywords

Abstract

The structural identification and the monitoring of the relative concentrations of a wide range of major (3) and minor secondary (16) metabolites used as marker substances for profiling of cannabis resin using GC-FID at the Swedish National Forensic Centre (NFC) has facilitated the mapping of their chemical and physical behaviors over a period of 48months whilst stored under different conditions (exposure to light, exposure to air, temperature). In all cases the behavior of this group of sesquiterpenes, sesquiterpenoids, cannabinoids and waxes could be directly related to their chemical lability/functionality. In particular, the identification of homologue triads for both Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) together with a group of seemingly chemically inert substances (for example, cannabicyclol(CBL) and the waxes (n-alkanes)) has created new tools for the establishment of common origins between samples of cannabis resins aged under different conditions. Since sampling of the resin blocks in NFC's method for profiling of cannabis resin is made below the surface, the effects of light incursion were found to be negligible. The effects of exposure to air (and indirectly temperature) were found to be more significant, not unexpectedly as many of the observed transformations were based on oxidation or rearrangement processes.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge