English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Clinical Oral Implants Research 2017-Oct

Effects of low-frequency ultrasound treatment of titanium surface roughness on osteoblast phenotype and maturation.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Janina Sedlaczek
Christoph H Lohmann
Ethan M Lotz
Sharon L Hyzy
Barbara D Boyan
Zvi Schwartz

Keywords

Abstract

OBJECTIVE

Low-frequency ultrasound is widely used in the treatment of chronically infected wounds. To investigate its feasibility as a method for in situ restoration of metal implant surfaces in cases of peri-implantitis, we evaluated how low-frequency ultrasound affected surface properties of and response of human osteoblast-like MG63 cells to titanium (Ti).

METHODS

Three Ti surfaces [hydrophobic/smooth (pretreatment, PT); hydrophobic/rough (sandblasted/acid-etched, SLA); and hydrophilic/rough (SLA processed and stored hydrophilicity, mSLA)] were subjected to 25 kHz ultrasound for 10 min/cm2 . Substrate roughness, chemical composition, and wettability were analyzed before and after ultrasound application. Osteoblastic maturation of cells on sonicated disks was compared to cells on untreated disks.

RESULTS

Ultrasound treatment altered the topography of all surfaces. Contact angles were reduced, and chemical compositions were altered by ultrasound on PT and SLA surfaces. Cell response to sonicated PT was comparable to untreated PT. Alkaline phosphatase was increased on sonicated SLA compared to untreated SLA, whereas DNA, osteocalcin, BMP2, osteoprotegerin, and VEGF-A were unchanged. Cells produced less osteocalcin and BMP2 on sonicated mSLA than on untreated mSLA, but no other parameters were affected.

CONCLUSIONS

These results show that low-frequency ultrasound altered Ti surface properties. Osteoblasts were sensitive to the changes induced by ultrasound treatment. The data suggest that the effect is to delay differentiation, but it is unclear whether this delay will prevent osseointegration. These results suggest that low-frequency ultrasound may be useful for treating implant surfaces in situ leading to successful re-osseointegration of implants affected by peri-implantitis.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge