English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Zhejiang University: Science B 2007-Jul

Effects of osmotic stress on antioxidant enzymes activities in leaf discs of PSAG12-IPT modified Gerbera.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Qi-xian Lai
Zhi-yi Bao
Zhu-jun Zhu
Qiong-qiu Qian
Bi-zeng Mao

Keywords

Abstract

Leaf senescence is often caused by water deficit and the chimeric gene P(SAG12)-IPT is an auto-regulated gene delaying leaf senescence. Using in vitro leaf discs culture system, the changes of contents of chlorophylls, carotenoids, soluble protein and thiobarbituric acid reactive substance (TBARS) and antioxidant enzymes activities were investigated during leaf senescence of P(SAGl2)-IPT modified gerbera induced by osmotic stress compared with the control plant (wild type). Leaf discs were incubated in 20%, 40% (w/v) polyethylene glycol (PEG) 6000 nutrient solution for 20 h under continuous light [130 micromol/(m(2) x s)]. The results showed that the contents of chlorophylls, carotenoids and soluble protein were decreased by osmotic stress with the decrease being more pronounced at 40% PEG, but that, at the same PEG concentration the decrease in the transgenic plants was significantly lower than that in the control plant. The activities of superoxide dismutase (SOD), catalases (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GPX) and dehydroascorbate reductase (DHAR) were stimulated by PEG treatment. However, the increases were higher in P(SAG12)-IPT transgenic plants than in the control plants, particularly at 40% PEG treatment. Lipid peroxidation (TBARS content) was increased by PEG treatment with the increase being much lower in transgenic plant than in the control plant. It could be concluded that the increases in the activities of antioxidant enzymes including SOD, CAT, APX, GPX and DHAR were responsible for the delay of leaf senescence induced by osmotic stress.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge