English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Investigative Dermatology 1993-Oct

Effects of sunscreens and a DNA excision repair enzyme on ultraviolet radiation-induced inflammation, immune suppression, and cyclobutane pyrimidine dimer formation in mice.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
P Wolf
D B Yarosh
M L Kripke

Keywords

Abstract

Exposure of skin to ultraviolet (UV) radiation inhibits the induction of delayed-type hypersensitivity (DTH) responses initiated at a distant, unirradiated site. Recent studies attributed this form of immune suppression to DNA damage in the form of cyclobutane pyrimidine dimers (CPD). In the present study, we investigated the protective defects of sunscreens on UV-induced systemic suppression of DTH to Candida albicans, inflammation, and DNA damage. The photoprotective effects of sunscreen preparations containing 8% octyl-N-dimethyl-p-aminobenzoate, 7.5% 2-ethylhexyl-p-methoxycinnamate, or 6% benzophenone-3 were studied in C3H mice exposed to a single dose of 500 mJ/cm2 UVB radiation from FS40 sunlamps. Inflammation was determined by the amount of skin edema at the site of UV irradiation, and DNA damage was assessed by measuring the frequency of endonuclease-sensitive sites in the epidermis. Application of the sunscreens before UV irradiation gave 75-97% protection against UV-induced edema, 67-91% protection against formation of CPD, but only 30-54% protection against suppression of DTH. In contrast, the topical application of liposomes containing a CPD-specific DNA repair enzyme immediately after UV irradiation resulted in 82% protection against suppression of DTH, but at best, 39% protection against skin edema. These findings demonstrate that sunscreens give less protection against UV-induced immune suppression than against skin edema and CPD formation. Furthermore, they suggest that less DNA damage is required to cause UV-induced immune suppression than to cause sunburn.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge