English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
BioMetals 2004-Dec

Effects of surface hydrophobicity on the catalytic iron ion retention in the active site of two catechol 1,2-dioxygenase isoenzymes.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Giovanna Di Nardo
Enrica Pessione
Maria Cavaletto
Laura Anfossi
Adriano Vanni
Fabrizio Briganti
Carlo Giunta

Keywords

Abstract

The different behaviour of two isozymes (IsoA and IsoB) of catechol 1,2-dioxygenase (C 1,20) from Acinetobacter radioresistens S13 on a hydrophobic interaction, Phenyl-Sepharose chromatographic column, prompted us to investigate the role of superficial hydrophobicity on structural-functional aspects for such class of enzymes. The interaction of 8-anilino-1-naphtalenesulphonate (ANS), a fluorescent probe known to bind to hydrophobic sites in proteins, revealed that the two isoenzymes have a markedly different hydrophobicity degree although a similar number of hydrophobic superficial sites were estimated (2.65 for IsoA and 2.18 for IsoB). ANS is easily displaced by adding the substrates catechol or 3-methylcatechol to the adduct, suggesting that the binding sites are in the near surroundings of the catalytic clefts. The analysis of the hydropathy profiles and the possible superficial cavities allowed to recognize the most feasible region for ANS binding. The lower hydrophobicity detected in the near surroundings of the catalytic pocket of IsoB supports its peculiarity to lose the catalytic metal ions more easily than IsoA. As previously suggested for other metalloenzymes, the presence of more hydrophilic and/or smaller residues near to the active site of IsoB is expected to increase the metal ligands mobility thus increasing the metal ion dissociation rate constants, estimated to be 0.078 h(-1) and 0.670 h(-1) for IsoA and IsoB respectively.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge