English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Zhongguo Zhongyao Zazhi 2011-Mar

[Effects of total glucosides of peony on expression of inflammatory cytokines and phosphorylated MAPK signal molecules in hippocampus induced by fibrillar Aβ42].

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Dehong Huang
Mengyuan Liu
Xiaofeng Yan

Keywords

Abstract

OBJECTIVE

To observe the effects of hippocampal Abeta42 deposition on the expression of inflammatory cytokines and phosphorylated MAPK signal molecules as well as the intervention of AD by total glucosides of paeony (TGP).

METHODS

12 week-old female SD rats were stereotactic injected one-time with a fibrillar Abeta42 positioning hippocampus to replicate AD pathology model and interfered with TGP. The expression of inflammatory cytokines and phosphorylated MAPK pathway signaling molecules were observed by immunohistochemistry (SABC), and SABC images were analyzed by image analysis software.

RESULTS

Compared with the control group, the IL-1beta, IL-6 and p-p38, p-JNK, p-MEK3/6 positive stained areas of AD pathology model group increased and their staining intensity decreased (the protein expression quantity inversely proportional to the staining intensity), while the IL-1beta, IL-6 and p-p38, p-JNK, p-MEK3/6 positive stained areas of the treatment groups decreased and their staining intensity increased compared with AD pathology model group.

CONCLUSIONS

Abeta42 deposition in hippocampus can induce the brain inflammation and the over-expression of IL-1beta, IL-6 and p-p38, p-JNK, p-MEK3/6. Inhibiting the over-expression of inflammatory cytokines and phosphorylated MAPK signaling molecules may be a major antagonistic mechanism of TGP against AD.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge