English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of the Science of Food and Agriculture 2011-Mar

Effects of water-saving superabsorbent polymer on antioxidant enzyme activities and lipid peroxidation in corn (Zea mays L.) under drought stress.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
M Robiul Islam
Yuegao Hu
Sishuai Mao
Pengfei Jia
A Egrinya Eneji
Xuzhang Xue

Keywords

Abstract

BACKGROUND

Drought is the most important abiotic stress factor limiting corn (Zea mays L.) growth and productivity. Therefore efficient management of soil moisture and study of metabolic changes in response to drought are important for improved production of corn. The objective of the present study was to gain a better understanding of drought tolerance mechanisms and improve soil water management strategies using a water-saving superabsorbent polymer (SAP) at 30 kg ha(-1) under three irrigation levels (adequate, moderate and deficit) using a new type of hydraulic pressure-controlled auto-irrigator.

RESULTS

The results showed that relative water content and leaf water potential were much higher in corn treated with SAP. Although application of SAP reduced biomass accumulation by 11.1% under adequate irrigation, it increased the biomass markedly by 39.0% under moderate irrigation and 98.7% under deficit irrigation. Plants treated with SAP under deficit irrigation showed a significant decrease in superoxide dismutase, catalase, peroxidase, ascorbate peroxidase and glutathione reductase activities in leaves compared with control plants.

CONCLUSIONS

The results of this study suggest that drought stress causes the production of oxygen radicals, leading to increased lipid peroxidation and oxidative stress in plants, and the application of a superabsorbent polymer could conserve soil water, making it available to plants for quenching oxidative stress and increasing biomass accumulation, especially under severe water stress.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge