English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biomaterials 2004-Jul

Elastin stabilization in cardiovascular implants: improved resistance to enzymatic degradation by treatment with tannic acid.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Jason C Isenburg
Dan T Simionescu
Naren R Vyavahare

Keywords

Abstract

The long-term performance of tissue-derived, glutaraldehyde (Glut)-treated cardiovascular implants such as prosthetic heart valves and vascular grafts is limited by the bio-degeneration of tissue components. While collagen is satisfactorily preserved by Glut, elastin is not stabilized and is highly vulnerable to degradation. The aim of our studies was to develop methods for efficient stabilization of elastin and subsequently reduce its vulnerability towards enzymatic degradation. More specifically, we investigated the use of tannic acid (TA)1 as a novel agent that specifically targets elastin stabilization. Basic investigations on in vitro interactions between Glut, TA and pure aortic elastin provided clear evidence that Glut treatment does not protect elastin from enzymatic degradation. TA bound to elastin in a time-dependent pattern and this binding increased the resistance of elastin to enzymatic degradation. In addition, when TA was used in mixture with Glut, the kinetic of TA binding to elastin was enhanced and this was translated into improved elastin stabilization. Our results clearly documented the superiority of TA as an elastin-stabilizing agent by comparison with the commonly utilized Glut-based tissue crosslinking techniques.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge