English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Analytica Chimica Acta 2018-Nov

Electrochemical biosensor made with tyrosinase immobilized in a matrix of nanodiamonds and potato starch for detecting phenolic compounds.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Jéssica Rocha Camargo
Marina Baccarin
Paulo A Raymundo-Pereira
Anderson M Campos
Geiser G Oliveira
Orlando Fatibello-Filho
Osvaldo N Oliveira
Bruno C Janegitz

Keywords

Abstract

The envisaged ubiquitous sensing and biosensing for varied applications has motivated materials development toward low cost, biocompatible platforms. In this paper, we demonstrate that carbon nanodiamonds (NDs) can be combined with potato starch (PS) and be deposited on a glassy carbon electrode (GCE) in the form of a homogeneous, rough film, with electroanalytical performance tuned by varying the relative ND-PS concentration. As a proof of concept, the ND/PS film served as matrix to immobilize tyrosinase (Tyr) and the resulting Tyr-ND-PS/GCE biosensor was suitable to detect catechol using differential pulse voltammetry with detection limit of 3.9 × 10-7 mol L-1 in the range between 5.0 × 10-6 and 7.4 × 10-4 mol L-1. Catechol could also be detected in river and tap water samples. This high sensitivity, competitive with biosensors made with more sophisticated procedures and materials in the literature, is attributed to the large surface area and conductivity imparted by the small NDs (<5 nm). In addition, the ND-PS matrix may have its use extended to immobilize other enzymes and biomolecules, thus representing a potential biocompatible platform for ubiquitous biosensing.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge