English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Free Radical Biology and Medicine 1998-May

Electronic spin resonance detection of superoxide and hydroxyl radicals during the reductive metabolism of drugs by rat brain preparations and isolated cerebral microvessels.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
J F Ghersi-Egea
V Maupoil
D Ray
L Rochette

Keywords

Abstract

A spin trapping technique was used to analyze by electron spin resonance (ESR) the formation of oxygen-derived free radicals during the cerebral reductive metabolism of xenobiotics able to undergo a single electron reduction, i.e. quinones, pyridinium compounds and nitroheterocyclics. Paraquat, menadione and nitrofurazone were used as model compounds of these three classes of molecules. ESR spectra indicative of superoxide and hydroxyl radical formation were obtained by incubation of brain homogenates directly within the ESR cavity at 37 degrees C for each of the three molecules tested. These signals were dependent on nucleotide cofactors, and increased in a time-dependent manner. The NADPH and NADH dependent free radical production was further characterized in brain microsomal and mitochondrial fractions, respectively. By using various combinations of reactive species inactivating enzymes (superoxide dismutase, catalase), a metal chelator (deferoxamine), and an hydroxyl trapping agent (dimethylsulfoxide), it was shown that (1) the primary radical generated was the superoxide anion; and (2) a significant production of the hydroxyl radical also occurred, that was secondary to the superoxide anion production. Consistent signals indicative of the production of both oxygen-derived free radicals were obtained when isolated cerebral microvessels which constitute the blood-brain barrier were incubated with the model molecules. This is of particular toxicological relevance, because this barrier represents a key element in the protection of the brain, and is in close contact with blood-born exogenous molecules.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge