English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Analytical Chemistry 2019-Feb

Elucidating the Distribution of Plant Metabolites from Native Tissues with Laser Desorption Low-Temperature Plasma Mass Spectrometry Imaging.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Abigail Moreno-Pedraza
Ignacio Rosas-Román
Nancy Garcia-Rojas
Héctor Guillén-Alonso
Cesaré Ovando-Vázquez
David Díaz-Ramírez
Jessica Cuevas-Contreras
Fredd Vergara
Nayelli Marsch-Martínez
Jorge Molina-Torres

Keywords

Abstract

Secondary metabolites of plants have important biological functions, which often depend on their localization in tissues. Ideally, a fresh untreated material should be directly analyzed to obtain a realistic view of the true sample chemistry. Therefore, there is a large interest for ambient mass-spectrometry-based imaging (MSI) methods. Our aim was to simplify this technology and to find an optimal combination of desorption/ionization principles for a fast ambient MSI of macroscopic plant samples. We coupled a 405 nm continuous wave (CW) ultraviolet (UV) diode laser to a three-dimensionally (3D) printed low-temperature plasma (LTP) probe. By moving the sample with a RepRap-based sampling stage, we could perform imaging of samples up to 16 × 16 cm2. We demonstrate the system performance by mapping mescaline in a San Pedro cactus ( Echinopsis pachanoi) cross section, tropane alkaloids in jimsonweed ( Datura stramonium) fruits and seeds, and nicotine in tobacco ( Nicotiana tabacum) seedlings. In all cases, the anatomical regions of enriched compound concentrations were correctly depicted. The modular design of the laser desorption (LD)-LTP MSI platform, which is mainly assembled from commercial and 3D-printed components, facilitates its adoption by other research groups. The use of the CW-UV laser for desorption enables fast imaging measurements. A complete tobacco seedling with an image size of 9.2 × 15.0 mm2 was analyzed at a pixel size of 100 × 100 μm2 (14 043 mass scans), in less than 2 h. Natural products can be measured directly from native tissues, which inspires a broad use of LD-LTP MSI in plant chemistry studies.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge