English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Physical Review Letters 2012-Jun

Emergence of spontaneous twist and curvature in non-euclidean rods: application to Erodium plant cells.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Hillel Aharoni
Yael Abraham
Rivka Elbaum
Eran Sharon
Raz Kupferman

Keywords

Abstract

We present a limiting model for thin non-euclidean elastic rods. Originating from the three-dimensional (3D) reference metric of the rod, which is determined by its internal material structure, we derive a 1D reduced rod theory. Specifically, we show how the spontaneous twist and curvature of a rod emerge from the reference metric derivatives. Thus, the model allows calculating the unconstrained equilibrium configuration of a thin rod directly from its internal structure. The model is applied to the study of cells from members of the Geraniaceae plant family and their configurational response to dehydration. We show how the geometrical arrangement of cellulose fibrils on the cell walls determines the helical shapes of isolated cells.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge