English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Agricultural and Food Chemistry 2014-Mar

Emulsifying and emulsion-stabilizing properties of gluten hydrolysates.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Iris J Joye
David J McClements

Keywords

Abstract

Gluten is produced as a coproduct of the wheat starch isolation process. In this study, gluten was hydrolyzed to degrees of hydrolysis (DH) of 3-6-10 and 1-2-3 with alcalase and trypsin, respectively. These peptidases have a clearly distinct substrate specificity. Corn oil-in-water emulsions (10 wt % oil) were prepared by high-pressure homogenization at pH 7.5. Gluten peptides with DH 3 proved to be the most effective in producing peptides displaying emulsifying properties. Higher levels of alcalase hydrolysates (2.0 wt %) than of trypsin hydrolysates (1.0 wt %) were required to produce stable emulsions with small droplet sizes, which is attributed to differences in the nature of the peptides formed. The emulsions had small mean droplet diameters (d32 < 1000 nm). Emulsions produced with trypsin hydrolysates (stable after 9 days at 55 °C) displayed better thermal stability compared to those produced with alcalase hydrolysates (destabilized after 2 days at 37 °C). The hydrolysate-containing emulsions, however, were quickly destabilized by salt addition (≤100 mM NaCl) and when the pH approached the isoelectric point of the coated droplets (pH ~5.5). Microscopic analysis revealed the formation of air-in-oil-in-water emulsions at lower hydrolysate concentrations, whereas at higher concentrations (≥3.0 wt %) extensive flocculation occurred. Both phenomena contributed to creaming of the emulsions. These results may be useful for the utilization of gluten hydrolysates in food and beverage products.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge